Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF(false, x, y) → HALF(x)
BITITER(x, y) → INC(y)
IF(false, x, y) → BITITER(half(x), y)
IF(true, x, y) → P(y)
HALF(s(s(x))) → HALF(x)
BITITER(x, y) → IF(zero(x), x, inc(y))
INC(s(x)) → INC(x)
BITITER(x, y) → ZERO(x)
BITS(x) → BITITER(x, 0)

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(false, x, y) → HALF(x)
BITITER(x, y) → INC(y)
IF(false, x, y) → BITITER(half(x), y)
IF(true, x, y) → P(y)
HALF(s(s(x))) → HALF(x)
BITITER(x, y) → IF(zero(x), x, inc(y))
INC(s(x)) → INC(x)
BITITER(x, y) → ZERO(x)
BITS(x) → BITITER(x, 0)

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INC(s(x)) → INC(x)

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


INC(s(x)) → INC(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(INC(x1)) = (1/4)x_1   
POL(s(x1)) = 1/4 + (2)x_1   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


HALF(s(s(x))) → HALF(x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [25,35]:

POL(HALF(x1)) = (1/2)x_1   
POL(s(x1)) = 1/4 + (2)x_1   
The value of delta used in the strict ordering is 3/8.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF(false, x, y) → BITITER(half(x), y)
BITITER(x, y) → IF(zero(x), x, inc(y))

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


IF(false, x, y) → BITITER(half(x), y)
The remaining pairs can at least be oriented weakly.

BITITER(x, y) → IF(zero(x), x, inc(y))
Used ordering: Polynomial interpretation [25,35]:

POL(zero(x1)) = x_1   
POL(half(x1)) = (1/4)x_1   
POL(true) = 0   
POL(false) = 1/4   
POL(BITITER(x1, x2)) = (4)x_1   
POL(s(x1)) = 1/4 + (4)x_1   
POL(inc(x1)) = 0   
POL(IF(x1, x2, x3)) = (1/4)x_1 + x_2   
POL(0) = 0   
The value of delta used in the strict ordering is 1/16.
The following usable rules [17] were oriented:

zero(s(x)) → false
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
zero(0) → true



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

BITITER(x, y) → IF(zero(x), x, inc(y))

The TRS R consists of the following rules:

half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
inc(0) → 0
inc(s(x)) → s(inc(x))
zero(0) → true
zero(s(x)) → false
p(0) → 0
p(s(x)) → x
bits(x) → bitIter(x, 0)
bitIter(x, y) → if(zero(x), x, inc(y))
if(true, x, y) → p(y)
if(false, x, y) → bitIter(half(x), y)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.